Dynamic NIR Fluorescence Imaging and Machine Learning Framework for Stratifying High vs. Low Notch-Dll4 Expressing Host Microenvironment in Triple-Negative Breast Cancer.
Shayan ShafieeJaidip M JagtapMykhaylo ZayatsJonathan P EpperleinAnjishnu BanerjeeAron GeurtsMichael FlisterSergiy ZhukAmit JoshiPublished in: Cancers (2023)
Delta like canonical notch ligand 4 (Dll4) expression levels in tumors are known to affect the efficacy of cancer therapies. This study aimed to develop a model to predict Dll4 expression levels in tumors using dynamic enhanced near-infrared (NIR) imaging with indocyanine green (ICG). Two rat-based consomic xenograft (CXM) strains of breast cancer with different Dll4 expression levels and eight congenic xenograft strains were studied. Principal component analysis (PCA) was used to visualize and segment tumors, and modified PCA techniques identified and analyzed tumor and normal regions of interest (ROIs). The average NIR intensity for each ROI was calculated from pixel brightness at each time interval, yielding easily interpretable features including the slope of initial ICG uptake, time to peak perfusion, and rate of ICG intensity change after reaching half-maximum intensity. Machine learning algorithms were applied to select discriminative features for classification, and model performance was evaluated with a confusion matrix, receiver operating characteristic curve, and area under the curve. The selected machine learning methods accurately identified host Dll4 expression alterations with sensitivity and specificity above 90%. This may enable stratification of patients for Dll4 targeted therapies. NIR imaging with ICG can noninvasively assess Dll4 expression levels in tumors and aid in effective decision making for cancer therapy.
Keyphrases
- fluorescence imaging
- machine learning
- poor prognosis
- photodynamic therapy
- cancer therapy
- artificial intelligence
- decision making
- escherichia coli
- deep learning
- stem cells
- binding protein
- high intensity
- cell proliferation
- chronic kidney disease
- high resolution
- magnetic resonance imaging
- prognostic factors
- drug release
- fluorescent probe
- magnetic resonance
- squamous cell