Login / Signup

Fabrication of Composite Structures of Lysozyme Fibril-Zein using Antisolvent Precipitation: Effects of Blending and pH Adjustment Sequences.

Jingru SongCuixia SunYanwei XiangYun XieAnalucia MataYapeng Fang
Published in: Journal of agricultural and food chemistry (2020)
Antisolvent precipitation is a widely used method to fabricate prolamin-based composites. In the present study, composite structures of lysozyme amyloid fibrils with zein proteins were fabricated using the antisolvent precipitation method by applying different blending and pH adjustment sequences. Globular prolamins were bound to the amyloid fibrils to combine their respective advantages. The dynamic light scattering showed that the composites with a characteristic stabilized behavior (43.60 ± 1.75 mV ∼ 35.20 ± 0.65 mV) were formed at pH 4.0-5.0, in which noncovalent interactions between fibril and particles occurred. Two different structures: fruit tree-like structure and beaded-like structure, were presented in AFM and TEM images due to the different pH adjustment sequences, while blending sequences had negligible effect on the morphology of the composites. A fruit tree-like entity was detected for lysozyme fibril-zein composites, where its "branches" bear zein globular particles. A beaded-like structure was observed for lysozyme fibril-zein composites, where lysozyme fibril was the thread and zein aggregates were the beads. The potential mechanism of this phenomenon can be explained as the fruit tree-like structure being primarily formed through electrostatic interactions while the beaded-like structure is mainly caused by hydrophobic interactions. The composites of fruit tree-like structures hold a more promising stability than those with beaded-like structures. The results of this research would give constructive information for the fabrication of amyloid fibril-prolamin protein composites, which may exhibit the combined advantages of each components and have potential applications in encapsulation and protection of bioactive substances and stabilizing emulsions.
Keyphrases
  • reduced graphene oxide
  • high resolution
  • aqueous solution
  • visible light
  • gold nanoparticles
  • healthcare
  • optical coherence tomography
  • convolutional neural network
  • human health
  • protein protein