Login / Signup

miR-146a interacting with lncRNA EPB41L4A-AS1 and lncRNA SNHG7 inhibits proliferation of bone marrow-derived mesenchymal stem cells.

Penglei CuiXiaoying ZhaoJinlong LiuXiaodong ChenYuan GaoKun TaoChuandong WangXiaoling Zhang
Published in: Journal of cellular physiology (2019)
Emerging evidence suggests that microRNA plays a pivotal role in cell proliferation. Our previous research has certified that miR-146a attenuates osteoarthritis through the regulation of cartilage homeostasis. However, little information about the function of miR-146a in bone marrow-derived mesenchymal stem cells (BMSCs) proliferation and the underlying mechanism was available. Therefore, this study aims at investigating the role of miR-146a on the proliferation of BMSCs and the possible mechanisms involved. The function of miR-146a on BMSCs proliferation was studied through overexpression and knockdown of miR-146a or the indicated long noncoding RNAs (lncRNAs) in BMSCs and then the proliferation rate of the BMSCs were detected by Cell Counting Kit-8 assay, colony formation assay. Besides, flow cytometry was used to test the cell cycle state of BMSCs modified by overexpression or knockdown of miR-146a or lncRNA EPB41L4A-AS1 (EPB41L4A Antisense RNA 1) and small nucleolar RNA host gene 7 (SNHG7). The expression level of marker genes involved in modulating cell proliferation was evaluated by quantitative polymerase chain reaction and western blot analysis. We discovered that the knockdown of miR-146a significantly promoted BMSCs proliferation. Moreover, miR-146a could bind to and inhibit endogenous expression of EPB41L4A-AS1 and SNHG7. Further study demonstrated that overexpression of EPB41L4A-AS1 and SNHG7 significantly enhanced proliferation of BMSCs. For the first time, we certified that miR-146a suppressed BMSCs proliferation, but EPB41L4A-AS1 and SNHG7 promoted BMSCs proliferation in the present study. Mechanistically, miR-146a significantly inhibited BMSCs proliferation partly through miR-146a/EPB41L4A-AS1 SNHG7/cell proliferation signaling pathway axis.
Keyphrases