Rice Big Grain1 enhances biomass and plant growth-promoting traits in rhizospheric yeast Candida tropicalis.
null EktaDebarati BiswasGayatri MukherjeeMrinal Kumar MaitiPublished in: Applied microbiology and biotechnology (2023)
The Big Grain1 (BG1) gene of rice (Oryza sativa L.) is reported to increase the yield of rice crops; however, its molecular mechanism is largely concealed. To explore its functional prospects, we have taken a structure-function-based approach. In silico analyses suggest OsBG1 is a DNA- and phytohormone-binding protein. Heterologous expression of OsBG1 with galactose-inducible promoter GAL1p in the rhizospheric yeast Candida tropicalis SY005 revealed 7.9- and 1.5-fold higher expression of the gene at 12 and 24 h, respectively, compared to the expression at 36 h post-galactose induction. Functional activity of the induced OsBG1 in engineered yeast increased cell density, specific growth rate, and biomass by 28.5%, 29.8%, and 14.1%, respectively, and decreased the generation time by 21.25%. Flow cytometry-based cell cycle analysis of OsBG1-expressing yeast cells exhibited an increase in the cells of the G2/M population by 15.8% after 12 h of post-galactose induction. The gene expression study of yeast transformants disclosed that OsBG1 regulates cell division by upregulating the expression of the endogenous gene cyclin B1 (CtCYB1) by 1.3- and 1.9-folds at 10 and 12 h, respectively, compared to the control, and is positively influenced by the phytohormone indole acetic acid (IAA). Further, the study revealed that OsBG1 significantly increases biofilm formation, stress tolerance, and IAA production in C. tropicalis SY005, implying its prospective role in enhancing plant growth-promoting traits in microbes. OsBG1-expressing rhizospheric yeast cells significantly improved the germination and growth parameters of the bio-inoculated rice seeds. Altogether, this study suggests OsBG1 can be employed to genetically improve suitable bio-inoculants for their plant growth-promoting traits to augment crop productivity. KEY POINTS: • In silico analyses suggested OsBG1 is a phytohormone-binding transcription factor. • OsBG1 enhanced growth in rhizospheric Candida tropicalis by upregulating CtCYB1. • OsBG1 improved plant growth-promoting traits of the rhizospheric yeast C. tropicalis.
Keyphrases
- plant growth
- biofilm formation
- binding protein
- cell cycle
- saccharomyces cerevisiae
- genome wide
- poor prognosis
- induced apoptosis
- gene expression
- transcription factor
- cell cycle arrest
- single cell
- dna methylation
- pseudomonas aeruginosa
- staphylococcus aureus
- flow cytometry
- copy number
- escherichia coli
- cell therapy
- cell proliferation
- climate change
- molecular docking
- wastewater treatment
- oxidative stress
- big data
- endoplasmic reticulum stress
- cell death
- endothelial cells
- cystic fibrosis
- machine learning
- bone marrow