Neovascularization and Synaptic Function Regulation with Memantine and Rosuvastatin in a Rat Model of Chronic Cerebral Hypoperfusion.
Nan ZhangChenchen SongBaomin ZhaoMengya XingLanlan LuoMarc L GordonYan ChengPublished in: Journal of molecular neuroscience : MN (2017)
Cerebral hypoperfusion is an important factor in the pathogenesis of cerebrovascular diseases and neurodegenerative disorders. We investigated the effects of memantine and rosuvastatin on both neovascularization and synaptic function in a rat model of chronic cerebral hypoperfusion, which was established by the bilateral common carotid occlusion (2VO) method. We tested learning and memory ability, synaptic function, circulating endothelial progenitor cell (EPC) number, expression of neurotrophic factors, and markers of neovasculogenesis and cell proliferation after memantine and/or rosuvastatin treatment. Rats treated with memantine and/or rosuvastatin showed significant improvement in Morris water maze task and long-term potentiation (LTP) in the hippocampus, compared with untreated 2VO model rats. Circulating EPCs, expression of brain-derived neurotrophic factor, and vascular endothelial growth factor, markers of microvessel density were increased by each of the three interventions. Rosuvastatin also increased cell proliferation in the hippocampus. Combined treatment with memantine and rosuvastatin showed greater effect on enhancement of LTP and expression of neurotrophic factors than either single medication treatment alone. Both memantine and rosuvastatin improved learning and memory, enhanced neovascularization and synaptic function, and upregulated neurotrophic factors in a rat model of chronic cerebral hypoperfusion.