Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of AATK expression. Targeted metabolomic analyses shown that intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of apoptosis-associated tyrosine kinase (AATK). Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of PEP-AATK axis in controlling viral infections. This article is protected by copyright. All rights reserved.
Keyphrases
- poor prognosis
- sars cov
- tyrosine kinase
- inflammatory response
- signaling pathway
- long non coding rna
- cell cycle arrest
- cell proliferation
- binding protein
- cell death
- oxidative stress
- induced apoptosis
- type diabetes
- metabolic syndrome
- adipose tissue
- risk factors
- coronary artery disease
- risk assessment
- drug delivery
- insulin resistance
- human health
- light emitting