MAPKAPK2, a potential dynamic network biomarker of α-synuclein prior to its aggregation in PD patients.
Zhenggang ZhongJiabao LiJiayuan ZhongYilin HuangJiaqi HuPiao ZhangBaowen ZhangYabin JinWei LuoRui LiuYuhu ZhangFei LingPublished in: NPJ Parkinson's disease (2023)
One of the important pathological features of Parkinson's disease (PD) is the pathological aggregation of α-synuclein (α-Syn) in the substantia nigra. Preventing the aggregation of α-Syn has become a potential strategy for treating PD. However, the molecular mechanism of α-Syn aggregation is unclear. In this study, using the dynamic network biomarker (DNB) method, we first identified the critical time point when α-Syn undergoes pathological aggregation based on a SH-SY5Y cell model and found that DNB genes encode transcription factors that regulated target genes that were differentially expressed. Interestingly, we found that these DNB genes and their neighbouring genes were significantly enriched in the cellular senescence pathway and thus proposed that the DNB genes HSF1 and MAPKAPK2 regulate the expression of the neighbouring gene SERPINE1. Notably, in Gene Expression Omnibus (GEO) data obtained from substantia nigra, prefrontal cortex and peripheral blood samples, the expression level of MAPKAPK2 was significantly higher in PD patients than in healthy people, suggesting that MAPKAPK2 has potential as an early diagnostic biomarker of diseases related to pathological aggregation of α-Syn, such as PD. These findings provide new insights into the mechanisms underlying the pathological aggregation of α-Syn.
Keyphrases
- genome wide
- genome wide identification
- end stage renal disease
- gene expression
- bioinformatics analysis
- transcription factor
- ejection fraction
- poor prognosis
- peripheral blood
- chronic kidney disease
- dna methylation
- prognostic factors
- peritoneal dialysis
- genome wide analysis
- human health
- long non coding rna
- single cell
- risk assessment
- mesenchymal stem cells
- bone marrow
- deep learning
- network analysis