Machine learning prediction of hepatic steatosis using body composition parameters: A UK Biobank Study.
Delbert Almerick T BoncanYan YuMiaoru ZhangJie LianVarut VardhanabhutiPublished in: npj aging (2024)
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease worldwide, yet detection has remained largely based on surrogate serum biomarkers, elastography or biopsy. In this study, we used a total of 2959 participants from the UK biobank cohort and established the association of dual-energy X-ray absorptiometry (DXA)-derived body composition parameters and leveraged machine learning models to predict NAFLD. Hepatic steatosis reference was based on MRI-PDFF which has been extensively validated previously. We found several significant associations with traditional measurements such as abdominal obesity, as defined by waist-to-hip ratio (OR = 2.50 (male), 3.35 (female)), android-gynoid ratio (OR = 3.35 (male), 6.39 (female)) and waist circumference (OR = 1.79 (male), 3.80 (female)) with hepatic steatosis. Similarly, A Body Shape Index (Quantile 4 OR = 1.89 (male), 5.81 (female)), and for fat mass index, both overweight (OR = 6.93 (male), 2.83 (female)) and obese (OR = 14.12 (male), 5.32 (female)) categories were likewise significantly associated with hepatic steatosis. DXA parameters were shown to be highly associated such as visceral adipose tissue mass (OR = 8.37 (male), 19.03 (female)), trunk fat mass (OR = 8.64 (male), 25.69 (female)) and android fat mass (OR = 7.93 (male), 21.77 (female)) with NAFLD. We trained machine learning classifiers with logistic regression and two histogram-based gradient boosting ensembles for the prediction of hepatic steatosis using traditional body composition indices and DXA parameters which achieved reasonable performance (AUC = 0.83-0.87). Based on SHapley Additive exPlanations (SHAP) analysis, DXA parameters that had the largest contribution to the classifiers were the features predicted with significant association with NAFLD. Overall, this study underscores the potential utility of DXA as a practical and potentially opportunistic method for the screening of hepatic steatosis.
Keyphrases
- body composition
- bone mineral density
- resistance training
- adipose tissue
- machine learning
- dual energy
- computed tomography
- body mass index
- insulin resistance
- weight loss
- type diabetes
- postmenopausal women
- physical activity
- bariatric surgery
- magnetic resonance
- climate change
- mass spectrometry
- fatty acid
- body weight
- obese patients
- sensitive detection
- lower limb
- image quality