Bacterial TIR domain-derived peptides inhibit innate immune signaling and catabolic responses in chondrocyte.
Lei HongShi-Jie WangJinpeng GuoXin YinQianjin YuMingjuan YangYufei WangYuehua KeWenfeng LiPublished in: Molecular biology reports (2019)
Osteoarthritis (OA) is a degenerative joint disease, in which low-grade inflammation plays an important role at the initiating step. Low-doses of LPS-induced inflammation in the plasma activate chondrocytes and promote the secretion proinflammatory cytokines, leading to secondary inflammation. Blocking OA-associated TLR activation is a promising strategy for the development of suitable therapies. Here, we want to find some bacteria-derived peptides that can block TLR signaling in chondrocytes more efficiently. Based on previous studies, we screened 12 TIR domain-derived peptides for their effects on NF-кB activation induced by LPS, IL-1β or TNF-α in murine ATDC-5 cells. We evaluated their effects on LPS-induced cytokine expression and secretion. Among them, two bacteria-derived peptides, TcpC-DD and TcpB-DD, showed the most potent inhibitory activities. In comparison with TcpB-DD, TcpC-DD exhibited broader TLR-inhibitory specificity during inflammation in chondrocytes. Furthermore, both TcpC-DD and TcpB-DD displayed strong inhibition of LPS- and IL-1β-induced catabolic reactions in chondrocytes. However, only TcpC-DD exhibited obvious suppression of TNF-α-induced catabolism. In conclusion, we identified two novel inhibitory peptides that modulate catabolism in chondrocytes and innate immune responses, and these peptides could be used to develop novel therapeutic strategies for OA.
Keyphrases
- lps induced
- inflammatory response
- immune response
- oxidative stress
- toll like receptor
- low grade
- rheumatoid arthritis
- diabetic rats
- amino acid
- knee osteoarthritis
- extracellular matrix
- nuclear factor
- poor prognosis
- high grade
- signaling pathway
- cell proliferation
- dendritic cells
- long non coding rna
- cell death
- binding protein