Login / Signup

A human meniscus explant model for studying early events in osteoarthritis development by proteomics.

Martin RydénKarin LindblomAida Yifter-LindgrenAleksandra TurkiewiczAnders AspbergViveka TillgrenMartin EnglundPatrik Önnerfjord
Published in: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (2023)
Degenerative meniscus lesions have been associated with both osteoarthritis etiology and its progression. We therefore sought to establish a human meniscus ex vivo model to study the meniscal response to cytokine treatment using a proteomics approach. Lateral menisci were obtained from five knee-healthy donors. The meniscal body was cut into vertical slices, and further divided into an inner (avascular) and outer region. Explants were either left untreated (controls) or stimulated with cytokines. Medium changes were conducted every three days up to day 21 and liquid chromatography-mass spectrometry was performed at all the time points for the identification and quantification of proteins. Mixed-effect linear regression models were used for statistical analysis to estimate the effect of treatments versus control on protein abundance. Treatment by IL1ß increased release of cytokines such as interleukins, chemokines, and matrix metalloproteinases but a limited catabolic effect in healthy human menisci explants. Further, we observed an increased release of matrix proteins (collagens, integrins, prolargin, tenascin) in response to oncostatin M (OSM)+tumor necrosis factor (TNF) and TNF+interleukin-6 (IL6)+sIL6R treatments, and analysis of semi-tryptic peptides provided additional evidence of increased catabolic effects in response to these treatments. The induced activation of catabolic processes may play a role in osteoarthritis development. This article is protected by copyright. All rights reserved.
Keyphrases