Login / Signup

Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris.

Zhang JiaojiaoWang FenLiu KuanboLiu QingYang YingCaihong Dong
Published in: Applied microbiology and biotechnology (2018)
Cordyceps militaris is a highly valued edible and medicinal fungus due to its production of various metabolites, including adenosine, cordycepin, N6-(2-hydroxyethyl)-adenosine, and carotenoids. The contents of these metabolites are indicative of the quality of commercially available fruit body of this fungus. In this work, the effects of environmental abiotic factors, including heat and light stresses, on the fruit body growth and metabolite production in C. militaris were evaluated during the late growth stage. The optimal growth temperature of C. militaris was 20 °C. It was found that a heat stress of 25 °C for 5-20 days during the late growth stage significantly promoted cordycepin and carotenoid production without affecting the biological efficiency. Light stress at 6000 lx for 5-20 days during the late growth stage significantly promoted cordycepin production but decreased the carotenoid content. Both heat and light stresses promoted N6-(2-hydroxyethyl)-adenosine production. In addition, gene expression analysis showed that there were simultaneous increases in the expression of genes encoding a metal-dependent phosphohydrolase (CCM_04437) and ATP phosphoribosyltransferase (CCM_04438) that are involved in the cordycepin biosynthesis pathway, which was consistent with the accumulation of cordycepin during heat stress for 5-20 days. A positive weak correlation between the cordycepin and adenosine contents was observed with a Pearson correlation coefficient of 0.338 (P < 0.05). The results presented herein provide a new strategy for the production of a superior quality fruit body of C. militaris and contribute to further elucidation of the effects of abiotic stress on metabolite accumulation in fungi.
Keyphrases
  • heat stress
  • heat shock
  • genome wide identification
  • ms ms
  • magnetic resonance imaging
  • poor prognosis
  • genome wide
  • protein kinase
  • magnetic resonance
  • risk assessment
  • dna methylation
  • drug discovery