Login / Signup

Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (Oryza sativa L.) through Promoting Nutrition Assimilation and the Defense System.

Yadong LiJunmei GaoXiaokai XuYing WuJianle ZhuangXuejie ZhangHaoran ZhangBingfu LeiMingtao ZhengYingliang LiuChaofan Hu
Published in: ACS applied materials & interfaces (2020)
Abiotic stress severely threatens agriculture. Herein, we studied the effect of heteroatom-free carbon dots (CDs) on the alleviation of abiotic stresses in rice for the first time. During in vitro coincubation, suspended rice cells were exposed to 2,4-dichlorophenoxyacetate sodium (2,4-D-Na, 30 μg mL-1), 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μg mL-1), NaCl (0.15 mol·L-1), and high light (2000 Lux), both with and without CDs (100 μg mL-1). After a week, CDs significantly reduced the inhibition rate of 2,4-D-Na on the rice cell biomass from 48.16 to 27.44% and increased the biomass of rice cells exposed to 2,4-D, NaCl, and high light, by 4.12, 1.10, and 4.01 times that of the control (pure nutrient medium), respectively. Furthermore, the growth of CD-germinated rice seedlings was not obviously affected by 2,4-D-Na, 2,4-D, and NaCl. Further results showed that the CDs demonstrated an intrinsic free-radical scavenging property and could increase the peroxidase activity and the contents of phenolics and flavonoids in rice by 125.81, 39.60, and 47.63%, respectively. Furthermore, CDs improved the nutrient assimilation of rice cells under 2,4-D stress by 14.69%. With higher antioxidant capacity and sufficient nutrients, the CD-treated rice showed excellent resistance to abiotic stresses. This study suggested the great potential of CDs in protecting crops against abiotic stress.
Keyphrases