Revealing Metabolic Dysregulation Induced by Polypropylene Nano- and Microplastics in Nile Tilapia via Noninvasive Probing Epidermal Mucus.
Xiaokang WuSheng-Ao YangYing KanMing LiJiaxin DongTao QiuYu GuYuanxin ZhaoDapeng LiangPublished in: Analytical chemistry (2024)
A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.
Keyphrases
- mass spectrometry
- liquid chromatography
- high resolution mass spectrometry
- amino acid
- human health
- risk assessment
- ms ms
- fatty acid
- metabolic syndrome
- high performance liquid chromatography
- cell wall
- tandem mass spectrometry
- single molecule
- wound healing
- insulin resistance
- heavy metals
- climate change
- ionic liquid
- ultra high performance liquid chromatography
- simultaneous determination
- life cycle
- molecularly imprinted
- multidrug resistant