Login / Signup

Determination of Rate-Limiting Factor for Formation of Beta-Catenin Destruction Complexes Using Absolute Protein Quantification.

Masashi KitazawaTomohisa HattaKoji OgawaEriko FukudaNaoki GoshimaTohru Natsume
Published in: Journal of proteome research (2017)
Wnt/β-catenin signaling plays important roles in both ontogenesis and development. In the absence of a Wnt stimulus, β-catenin is degraded by a multiprotein "destruction complex" that includes Axin, APC, GSK3B, and FBXW11. Although the key molecules required for transducing Wnt signals have been identified, a quantitative understanding of this pathway has been lacking. Here, we calculated the absolute number of β-catenin destruction complexes by absolute protein quantification using LC-MS/MS. Similar amounts of destruction complex-constituting proteins and β-catenin interacted, and the number of destruction complexes was calculated to be about 1468 molecules/cell. We demonstrated that the calculated number of destruction complexes was valid for control of the β-catenin destruction rate under steady-state conditions. Interestingly, APC had the minimum expression level among the destruction complex components at about 2233 molecules/cell, and this number approximately corresponded to the calculated number of destruction complexes. Decreased APC expression by siRNA transfection decreased the number of destruction complexes, resulting in β-catenin accumulation and stimulation of the transcriptional activity of T-cell factor. Taken together, our results suggest that the amount of APC expression is the rate-limiting factor for the constitution of β-catenin destruction complexes.
Keyphrases