Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures.
Mohammed AshrafiLilyann Novak-FrazerMatthew BatesMohamed BaguneidTeresa Alonso-RasgadoGuoqing XiaRiina Rautemaa-RichardsonArdeshir BayatPublished in: Scientific reports (2018)
Biofilms are major contributors to delayed wound healing and there is a need for clinically relevant experimental models to assess theranostics. Microorganisms release volatile organic compounds (VOCs) and the ability to identify these in infected cutaneous wounds could lead to efficient non-invasive diagnosis. The aims here were to develop and assess bacterial biofilm formation and identify their VOC profiles in an in vitro model and validate in human ex vivo incisional and excisional cutaneous wound models. Biofilm development was assessed using multiple microscopy techniques with biofilm-forming deficient controls and quantified using metabolic and biomass assays; and VOC production measured by gas chromatography-mass spectrometry. The production of most VOCs was affected by biofilm development and model used. Some VOCs were specific either for planktonic or biofilm growth. The relative abundance of some VOCs was significantly increased or decreased by biofilm growth phase (P < 0.05). Some Staphylococcus aureus and Pseudomonas aeruginosa VOCs correlated with biofilm metabolic activity and biomass (R ≤ -0.5; ≥0.5). We present for the first time bacterial biofilm formation in human ex vivo cutaneous wound models and their specific VOC profiles. These models provide a vehicle for human skin-relevant biofilm studies and VOC detection has potential clinical translatability in efficient non-invasive diagnosis of wound infection.
Keyphrases
- biofilm formation
- pseudomonas aeruginosa
- staphylococcus aureus
- candida albicans
- wound healing
- cystic fibrosis
- escherichia coli
- acinetobacter baumannii
- endothelial cells
- gas chromatography mass spectrometry
- surgical site infection
- high throughput
- wastewater treatment
- gene expression
- dna methylation
- optical coherence tomography
- anaerobic digestion
- risk assessment
- pluripotent stem cells
- mass spectrometry
- liquid chromatography
- multidrug resistant