Preliminary Bioactivity Assessment of Myrothecium Species (Stachybotryaceae) Crude Extracts against Aedes aegypti (Diptera: Culicidae): A First Approach from This Phytopathogenic Fungi.
Carlos Alejandro Granados-EchegoyenJosé Abimael Campos-RuizRafael Pérez-PachecoAlfonso Vásquez-LópezIleana Vera-ReyesFabián L ArroyoAlberto Santillán-FernándezEvert Villanueva-SánchezClemente Villanueva-VerduzcoAlicia Fonseca-MuñozFidel Diego-NavaYi WangPublished in: Journal of fungi (Basel, Switzerland) (2024)
Mosquitoes, as insect vectors, play a crucial role in transmitting viruses and parasites, leading to millions of human deaths in tropical and subtropical regions worldwide. This study aimed to evaluate the effects of ethanolic extracts of three species within the genus Myrothecium ( M. roridum , M. dimerum , and M. nivale ) on Aedes aegypti mosquito larvae to assess the inhibitory effect on growth and development, as well as to determine mortality. We quantify the average lethal concentrations and provide a qualitative characterization of the chemical groups responsible for their potential. Phytochemical screening revealed the presence of alkaloids, flavonoids, and terpenoids in the ethanolic extracts of the three fungal species. Tannins were found only in the extracts of M. dimerum and M. roridum . We observed a clear dependence of the effects of the crude extracts on mosquito larvae on the concentrations used and the duration of exposure. The toxic effect was observed after 48 h at a concentration of 800 ppm for both M. dimerum and M. nivale , while M. roridum showed effectiveness after 72 h. All three species within the genus Myrothecium exhibited 100% biological activity after 72 h of exposure at 600 ppm. At lower concentrations, there was moderate growth and development inhibitory activity in the insect life cycle. The study highlights the effectiveness of crude Myrothecium extracts in combating mosquito larvae, with effects becoming apparent between 48 and 72 h of exposure. This initial approach underscores the potential of the fungus's secondary metabolites for further in-depth analysis of their individual effects or synergies between them.