Login / Signup

Roles of A-kinase Anchor Protein 12 in Astrocyte and Oligodendrocyte Precursor Cell in Postnatal Corpus Callosum.

Hajime TakaseGen HamanakaRyo OhtomoJi Hyun ParkKelly K ChungIrwin H GelmanKyu-Won KimJosephine LokEng H LoKen Arai
Published in: Stem cell reviews and reports (2021)
The formation of the corpus callosum in the postnatal period is crucial for normal neurological function, and clinical genetic studies have identified an association of 6q24-25 microdeletion in this process. However, the mechanisms underlying corpus callosum formation and its critical gene(s) are not fully understood or identified. In this study, we examined the roles of AKAP12 in postnatal corpus callosum formation by focusing on the development of glial cells, because AKAP12 is coded on 6q25.1 and has recently been shown to play roles in the regulations of glial function. In mice, the levels of AKAP12 expression was confirmed to be larger in the corpus callosum compared to the cortex, and AKAP12 levels decreased with age both in the corpus callosum and cortex regions. In addition, astrocytes expressed AKAP12 in the corpus callosum after birth, but oligodendrocyte precursor cells (OPCs), another major type of glial cell in the developing corpus callosum, did not. Furthermore, compared to wild types, Akap12 knockout mice showed smaller numbers of both astrocytes and OPCs, along with slower development of corpus callosum after birth. These findings suggest that AKAP12 signaling may be required for postnatal glial formation in the corpus callosum through cell- and non-cell autonomous mechanisms.
Keyphrases