Optimized Pair Natural Orbitals for the Coupled Cluster Methods.
Marjory C ClementJinmei ZhangCannada A LewisChao YangEdward F ValeevPublished in: Journal of chemical theory and computation (2018)
We present the coupled-cluster singles and doubles method formulated in terms of truncated pair natural orbitals (PNO) that are optimized to minimize the effect of truncation. Compared to the standard ground-state PNO coupled-cluster approaches, in which truncated PNOs derived from first-order Møller-Plesset (MP1) amplitudes are used to compress the CC wave operator, the iteratively optimized PNOs ("iPNOs") offer moderate improvement for small PNO ranks but rapidly increase their effectiveness for large PNO ranks. The error introduced by PNO truncation in the CCSD energy is reduced by orders of magnitude in the asymptotic regime, with an insignificant increase in PNO ranks. The effect of PNO optimization is particularly effective when combined with Neese's perturbative correction for the PNO incompleteness of the CCSD energy. The use of the perturbative correction in combination with the PNO optimization procedure seems to produce the most precise approximation to the canonical CCSD energies for small and large PNO ranks. For the standard benchmark set of noncovalent binding energies, remarkable improvements with respect to the standard PNO approach range from a factor of 3 with PNO truncation threshold τPNO = 10-6 (with the maximum PNO truncation error in the binding energy of only 0.1 kcal/mol) to more than 2 orders of magnitude with τPNO = 10-9.