Microfiltration of raw soy sauce: membrane fouling mechanisms and characterization of physicochemical, aroma and shelf-life properties.
Hao GuoJun HuangRongqing ZhouChong-De WuYao JinPublished in: RSC advances (2019)
Refinement to remove fermented mash residue is essential for obtaining clarified, stable and high-quality soy sauce. In this study, raw soy sauce microfiltration was investigated. Four widely-used microfiltration membranes were employed: ceramic, polyethersulfone (PES), polyvinylidene fluoride (PVDF) and mixed cellulose ester (MCE). Membrane fouling mechanisms were identified based on the blocking filtration model, indicating that the dominant fouling mechanism during soy sauce microfiltration was cake formation on the membrane surface. Microfiltration delivered highly dispersed soy sauce having superior clarity and a light color, with satisfactory sterilization quality, and preserved well the NaCl, reducing sugar, total acid and amino nitrogen content, leading to a product having a longer shelf life as compared to pasteurization. The loss of volatile compounds after refinement (microfiltration and pasteurization) was not neglected, particularly the ester groups (total loss of 76.3% to 96.4%), which affected the aroma profile of the soy sauce; all the samples from microfiltration seemed to lack the floral aroma. Ceramic membrane filtration and pasteurization exhibited relatively good preservation of the aroma of soy sauce, which then obtained the best scores in sensory analysis.