Machine to brain: facial expression recognition using brain machine generative adversarial networks.
Dongjun LiuJin CuiZeyu PanHangkui ZhangJianting CaoWanzeng KongPublished in: Cognitive neurodynamics (2023)
The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features. More specifically, we firstly obtain EEG signals triggered from facial emotion images, then we adopt BM-GAN to carry out the mutual generation of image visual features and EEG cognitive features. BM-GAN intends to use the cognitive knowledge learnt from EEG signals to instruct the model to perceive LIKE-EEG features. Thereby, BM-GAN has a superior performance for FER like the human brain. The proposed model consists of VisualNet, EEGNet, and BM-GAN. More specifically, VisualNet can obtain image visual features from facial emotion images and EEGNet can obtain EEG cognitive features from EEG signals. Subsequently, the BM-GAN completes the mutual generation of image visual features and EEG cognitive features. Finally, the predicted LIKE-EEG features of test images are used for FER. After learning, without the participation of the EEG signals, an average classification accuracy of 96.6 % is obtained on Chinese Facial Affective Picture System dataset using LIKE-EEG features for FER. Experiments demonstrate that the proposed method can produce an excellent performance for FER.