Login / Signup

An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.

Krishna C SuddalaJinwei Zhang
Published in: IUBMB life (2019)
T-box riboswitches are a widespread class of structured noncoding RNAs in Gram-positive bacteria that regulate the expression of amino acid-related genes. They form negative feedback loops to maintain steady supplies of aminoacyl-transfer RNAs (tRNAs) to the translating ribosomes. T-box riboswitches are located in the 5' leader regions of mRNAs that they regulate and directly bind to their cognate tRNA ligands. T-boxes further sense the aminoacylation state of the bound tRNAs and, based on this readout, regulate gene expression at the level of transcription or translation. T-box riboswitches consist of two conserved domains-a 5' Stem I domain that is involved in specific tRNA recognition and a 3' antiterminator/antisequestrator (or discriminator) domain that senses the amino acid on the 3' end of the bound tRNA. Interaction of the 3' end of an uncharged but not charged tRNA with a thermodynamically weak discriminator domain stabilizes it to promote transcription readthrough or translation initiation. Recent biochemical, biophysical, and structural studies have provided high-resolution insights into the mechanism of tRNA recognition by Stem I, several structural models of full-length T-box-tRNA complexes, mechanism of amino acid sensing by the antiterminator domain, as well as kinetic details of tRNA binding to the T-box riboswitches. In addition, translation-regulating T-box riboswitches have been recently characterized, which presented key differences from the canonical transcriptional T-boxes. Here, we review the recent developments in understanding the T-box riboswitch mechanism that have employed various complementary approaches. Further, the regulation of multiple essential genes by T-boxes makes them very attractive drug targets to combat drug resistance. The recent progress in understanding the biochemical, structural, and dynamic aspects of the T-box riboswitch mechanism will enable more precise and effective targeting with small molecules. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1167-1180, 2019.
Keyphrases
  • transcription factor
  • binding protein
  • amino acid
  • gene expression
  • high resolution
  • mass spectrometry
  • poor prognosis
  • emergency department
  • oxidative stress
  • long non coding rna
  • cancer therapy
  • adverse drug