Login / Signup

Functional Characterization of Peptide Transporters in Bovine Mammary Epithelial Cells.

Caihong WangYalu SunFeng-Qi ZhaoJianxin LiuHong-Yun Liu
Published in: Journal of agricultural and food chemistry (2018)
The objective of this study was to characterize the expression profile, transport kinetics, and regulation of peptide transporters in bovine mammary epithelial cells (BMECs). Quantitative reverse-transcription real-time PCR, Western blotting, and immunofluorescence staining were used to investigate the expression of peptide transporters in bovine mammary tissues. The effects of time, pH, concentration, and specific inhibitors on β-alanyl-l-lysyl- Nε-7-amino-4-methyl-coumarin-3-acetic acid (β-Ala-Lys-AMCA) uptake in BMECs were also studied. The results showed that the peptide transporters PepT2 and PhT1 are both expressed in bovine mammary glands. The optimal pH for the uptake of β-Ala-Lys-AMCA in BMECs was 6.5. The transport-kinetics study suggested that the uptake of β-Ala-Lys-AMCA in BMECs is saturable over the tested concentration, with a Km value of 82 ± 18 μM and a Vmax of 124 ± 11 pmol/min per milligram of protein. Other dipeptides, including Gly-Sar, Met-Gly, and Met-Met, competitively inhibited β-Ala-Lys-AMCA uptake in BMECs. However, histidine had no effect on β-Ala-Lys-AMCA uptake. Furthermore, knocking down PepT2 could significantly reduce β-Ala-Lys-AMCA uptake, but PhT1 interference had no effect on peptide uptake in BMECs. The inhibition of PI3K and Akt decreased the uptake of β-Ala-Lys-AMCA. The above results revealed functional characteristics of peptide transporters and demonstrated that PepT2 may play a major role in β-Ala-Lys-AMCA uptake in BMECs. Moreover, the PI3K-Akt signaling pathway may regulate the uptake of β-Ala-Lys-AMCA in BMECs.
Keyphrases
  • signaling pathway
  • tyrosine kinase
  • gene expression
  • poor prognosis
  • epithelial mesenchymal transition
  • small molecule
  • long non coding rna
  • mass spectrometry
  • pi k akt
  • binding protein