Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples.
Yan YangMeiqing LinJian TangShengtao MaYingxin YuPublished in: Analytical and bioanalytical chemistry (2020)
Gas chromatography negative chemical ionization mass spectrometry (GC-NCI-MS) is a preferred instrumental approach for the trace and ultra-trace analysis of various toxic organics and their metabolites in human biological fluids. Specifically, the method has played an important role in the highly sensitive and specific quantitative detection of persistent highly halogenated compounds in environmental matrices and biota during the past few decades. However, for the analysis of toxic metabolites with active hydrogen atoms, such as acids, alcohols, and phenolic compounds, from biological matrixes or organics without electronegative atoms or groups, a derivatization step is often needed prior to GC analysis. Such derivatization aims to change the properties of targets to improve their separation, increase their volatility, and enhance the sensitivity of instrumental detection. This review summarizes three derivatization strategies commonly used for GC methods, i.e., alkylation, silylation, and acylation, together with their application combined with GC-NCI-MS for the high sensitivity analysis of toxic organic metabolites in the human body. The advantages and disadvantages of each derivatization method and potential directions for future applications are discussed. Given the broad variety of applications as well as the compound-specific sensitivity for the ultra-trace analysis of target xenobiotics in human biological fluids, subsequent studies are required to develop convenient, faster derivatization procedures and reagents better suited for routine analysis. Graphical abstract.
Keyphrases
- gas chromatography
- mass spectrometry
- tandem mass spectrometry
- liquid chromatography
- high resolution mass spectrometry
- ms ms
- gas chromatography mass spectrometry
- endothelial cells
- high performance liquid chromatography
- high resolution
- ultra high performance liquid chromatography
- solid phase extraction
- induced pluripotent stem cells
- capillary electrophoresis
- heavy metals
- pluripotent stem cells
- liquid chromatography tandem mass spectrometry
- living cells
- fluorescent probe
- loop mediated isothermal amplification
- human health
- clinical practice