Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy.
Lutian YaoJiawei LuLeilei ZhongYulong WeiTao GuiLuqiang WangJaimo AhnJoel D BoerckelDanielle RuxChristina MundyLing QinMaurizio PacificiPublished in: eLife (2023)
Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the TGF-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.
Keyphrases
- single cell
- bone mineral density
- bone regeneration
- soft tissue
- hip fracture
- bone loss
- transforming growth factor
- electronic health record
- endothelial cells
- body composition
- big data
- bone marrow
- epithelial mesenchymal transition
- postmenopausal women
- metabolic syndrome
- induced apoptosis
- copy number
- computed tomography
- machine learning
- cell proliferation
- gene expression
- cell death
- skeletal muscle
- endoplasmic reticulum stress
- extracellular matrix
- adipose tissue
- data analysis
- genome wide identification
- pluripotent stem cells
- cell fate
- dengue virus