The impact of phage and phage resistance on microbial community dynamics.
Ellinor O AlsethRafael CustodioSarah A SundiusRachel A KuskeSam P BrownEdze R WestraPublished in: PLoS biology (2024)
Where there are bacteria, there will be bacteriophages. These viruses are known to be important players in shaping the wider microbial community in which they are embedded, with potential implications for human health. On the other hand, bacteria possess a range of distinct immune mechanisms that provide protection against bacteriophages, including the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive immunity. While our previous work showed how a microbial community may impact phage resistance evolution, little is known about the inverse, namely how interactions between phages and these different phage resistance mechanisms affect the wider microbial community in which they are embedded. Here, we conducted a 10-day, fully factorial evolution experiment to examine how phage impact the structure and dynamics of an artificial four-species bacterial community that includes either Pseudomonas aeruginosa wild-type or an isogenic mutant unable to evolve phage resistance through CRISPR-Cas. Additionally, we used mathematical modelling to explore the ecological interactions underlying full community behaviour, as well as to identify general principles governing the impacts of phage on community dynamics. Our results show that the microbial community structure is drastically altered by the addition of phage, with Acinetobacter baumannii becoming the dominant species and P. aeruginosa being driven nearly extinct, whereas P. aeruginosa outcompetes the other species in the absence of phage. Moreover, we find that a P. aeruginosa strain with the ability to evolve CRISPR-based resistance generally does better when in the presence of A. baumannii, but that this benefit is largely lost over time as phage is driven extinct. Finally, we show that pairwise data alone is insufficient when modelling our microbial community, both with and without phage, highlighting the importance of higher order interactions in governing multispecies dynamics in complex communities. Combined, our data clearly illustrate how phage targeting a dominant species allows for the competitive release of the strongest competitor while also contributing to community diversity maintenance and potentially preventing the reinvasion of the target species, and underline the importance of mapping community composition before therapeutically applying phage.
Keyphrases
- microbial community
- pseudomonas aeruginosa
- acinetobacter baumannii
- crispr cas
- cystic fibrosis
- antibiotic resistance genes
- biofilm formation
- genome editing
- human health
- healthcare
- risk assessment
- mental health
- wild type
- drug resistant
- machine learning
- gene expression
- deep learning
- dna methylation
- genetic diversity
- big data
- mass spectrometry
- anaerobic digestion
- data analysis