Comparison of rhBMP-2 in Combination with Different Biomaterials for Regeneration in Rat Calvaria Critical-Size Defects.
Francisca UribeBélgica VásquezJuan Pablo AlisterSergio OlatePublished in: BioMed research international (2022)
Regeneration of critical bone defects requires the use of biomaterials. The incorporation of osteoinductive agents, such as bone morphogenetic proteins (BMPs), improves bone formation. This study aimed to compare the efficacy of rhBMP-2 in combination with different materials for bone regeneration in critical-sized rat calvarial defects. This was an experimental animal study using 30 rats. In each rat, two 5-mm critical-size defects were made in the calvaria (60 bone defects in total) using a trephine. All rats were randomized to one of the six groups: control (C), autograft + rhBMP-2 (A), absorbable collagen sponge + rhBMP-2 (ACS), β -tricalcium phosphate + rhBMP-2 (B-TCP), bovine xenograft + rhBMP-2 (B), and hydroxyapatite + rhBMP-2 (HA). The outcome was assessed after 4 and 8 weeks using histological description and the histological bone healing scale. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U tests, with a p- value set at 0.05. The average bone healing scores per group were as follows: C group, 12.5; A group, 26.5; ACS group, 18.8; B-TCP group, 26.2; HA group, 20.9; and B group, 20.9. The C group showed a significant difference between weeks 4 and 8 ( p = 0.032). Among the 4-week groups, the C group showed a significant difference compared to A ( p = 0.001), ACS ( p = 0.017), and B-TCP ( p = 0.005) groups. The 8-week experimental group did not show any significant differences between the groups. The 5-mm critical size defect in rat calvaria requires the use of bone biomaterials to heal at 4 and 8 weeks. rhBMP-2, as applied in this study, showed no difference in new bone formation when combined with bovine, B-TCP, or HA biomaterials.