Daily consumption of wild olive (acebuche) oil reduces blood pressure and ameliorates endothelial dysfunction and vascular remodelling in rats with NG-nitro-L-arginine methyl ester-induced hypertension.
Claudia Reyes-GoyaÁlvaro Santana-GarridoGema Aguilar-EspejoM Carmen Pérez-CaminoAlfonso MateCarmen M VázquezPublished in: The British journal of nutrition (2022)
Despite numerous reports on the beneficial effects of olive oil in the cardiovascular context, very little is known about the olive tree's wild counterpart (Olea europaea, L. var. sylvestris), commonly known as acebuche (ACE) in Spain. The aim of this study was to analyse the possible beneficial effects of an extra virgin ACE oil on vascular function in a rodent model of arterial hypertension (AH) induced by NG-nitro-l-arginine methyl ester (L-NAME). Four experimental groups of male Wistar rats were studied: (1) normotensive rats (Control group); (2) normotensive rats fed a commercial diet supplemented with 15 % (w/w) ACE oil (Acebuche group); (3) rats made hypertensive following administration of L-NAME (L-NAME group); and (4) rats treated with L-NAME and simultaneously supplemented with 15 % ACE oil (LN + ACE group). All treatments were maintained for 12 weeks. Besides a significant blood pressure (BP)-lowering effect, the ACE oil-enriched diet counteracted the alterations found in aortas from hypertensive rats in terms of morphology and responsiveness to vasoactive mediators. In addition, a decrease in hypertension-related fibrotic and oxidative stress processes was observed in L-NAME-treated rats subjected to ACE oil supplement. Therefore, using a model of AH via nitric oxide depletion, here we demonstrate the beneficial effects of a wild olive oil based upon its vasodilator, antihypertensive, antioxidant, antihypertrophic and antifibrotic properties. We postulate that regular inclusion of ACE oil in the diet can alleviate the vascular remodelling and endothelial dysfunction processes typically found in AH, thus resulting in a significant reduction of BP.
Keyphrases
- emergency department
- blood pressure
- angiotensin converting enzyme
- nitric oxide
- angiotensin ii
- fatty acid
- oxidative stress
- physical activity
- hypertensive patients
- arterial hypertension
- heart rate
- weight loss
- type diabetes
- dna damage
- adipose tissue
- mouse model
- signaling pathway
- skeletal muscle
- diabetic rats
- genetic diversity
- newly diagnosed
- nitric oxide synthase
- insulin resistance
- anti inflammatory
- blood glucose
- glycemic control