Myocardial infarction (MI) results in an impaired heart function. Conductive hydrogel patch-based therapy has been considered as a promising strategy for cardiac repair after MI. In our study, we fabricated a three-dimensional (3D) printed conductive hydrogel patch made of fibrinogen scaffolds and mesenchymal stem cells (MSCs) combined with graphene oxide (GO) flakes (MSC@GO), capitalizing on GO's excellent mechanical property and electrical conductivity. The MSC@GO hydrogel patch can be attached to the epicardium via adhesion to provide strong electrical integration with infarcted hearts, as well as mechanical and regeneration support for the infarcted area, thereby up-regulating the expression of connexin 43 (Cx43) and resulting in effective MI repair in vivo . In addition, MI also triggers apoptosis and damage of cardiomyocytes (CMs), hindering the normal repair of the infarcted heart. GO flakes exhibit a protective effect against the apoptosis of implanted MSCs. In the mouse model of MI, MSC@GO hydrogel patch implantation supported cardiac repair by reducing cell apoptosis, promoting gap connexin protein Cx43 expression, and then boosting cardiac function. Together, this study demonstrated that the conductive hydrogel patch has versatile conductivity and mechanical support function and could therefore be a promising candidate for heart repair.
Keyphrases
- tissue engineering
- drug delivery
- mesenchymal stem cells
- heart failure
- hyaluronic acid
- wound healing
- left ventricular
- oxidative stress
- poor prognosis
- mouse model
- stem cells
- cell death
- atrial fibrillation
- reduced graphene oxide
- cell proliferation
- pseudomonas aeruginosa
- binding protein
- bone marrow
- signaling pathway
- long non coding rna
- escherichia coli