Login / Signup

Cross-regional phase amplitude coupling supports the encoding of episodic memories.

David X WangKelsey SchmittSarah SegerCarlos E DavilaBradley C Lega
Published in: Hippocampus (2021)
Phase amplitude coupling (PAC) between theta and gamma oscillations represents a key neurophysiological mechanism that promotes the temporal organization of oscillatory activity. For this reason, PAC has been implicated in item/context integration for episodic processes, including coordinating activity across multiple cortical regions. While data in humans has focused principally on PAC within a single brain region, data in rodents has revealed evidence that the phase of the hippocampal theta oscillation modulates gamma oscillations in the cortex (and vice versa). This pattern, termed cross-regional PAC (xPAC), has not previously been observed in human subjects engaged in mnemonic processing. We use a unique dataset with intracranial electrodes inserted simultaneously into the hippocampus and seven cortical regions across 40 human subjects to (1) test for the presence of significant cross-regional PAC (xPAC), (2) to establish that the magnitude of xPAC predicts memory encoding success, (3) to describe specific frequencies within the broad 2-9 Hz theta range that govern hippocampal-cortical interactions in xPAC, and (4) compare anterior versus posterior hippocampal xPAC patterns. We find that strong functional xPAC occurs principally between the hippocampus and other mesial temporal structures, namely entorhinal and parahippocampal cortices, and that xPAC is overall stronger for posterior hippocampal connections. We also show that our results are not confounded by alternative factors such as inter-regional phase synchrony, local PAC occurring within cortical regions, or artifactual theta oscillatory waveforms.
Keyphrases