Primary cilia mediate skeletogenic BMP and Hedgehog signaling in heterotopic ossification.
Kai HeXuhui ZhouWeijun LiSaman ToutounchiYan HuangJianfeng WuXiaoyu MaWolfgang BaehrRobert J PignoloKun LingXuhui ZhouHaitao WangJinghua HuPublished in: Science translational medicine (2024)
Heterotopic ossification (HO), defined as the formation of extraskeletal bone in muscle and soft tissues, is a diverse pathological process caused by either genetic mutations or inciting trauma. Fibrodysplasia ossificans progressiva (FOP) is a genetic form of HO caused by mutations in the bone morphogenetic protein (BMP) type I receptor gene activin A receptor type 1 ( ACVR1 ). These mutations make ACVR1 hypersensitive to BMP and responsive to activin A. Hedgehog (Hh) signaling also contributes to HO development. However, the exact pathophysiology of how skeletogenic cells contribute to endochondral ossification in FOP remains unknown. Here, we showed that the wild-type or FOP-mutant ACVR1 localized in the cilia of stem cells from human exfoliated deciduous teeth with key FOP signaling components, including activin A receptor type 2A/2B, SMAD family member 1/5, and FK506-binding protein 12kD. Cilia suppression by deletion of intraflagellar transport 88 or ADP ribosylation factor like GTPase 3 effectively inhibited pathological BMP and Hh signaling, subdued aberrant chondro-osteogenic differentiation in primary mouse or human FOP cells, and diminished in vivo extraskeletal ossification in Acvr1 Q207D , Sox2-Cre ; Acvr1 R206H/+ FOP mice and in burn tenotomy-treated wild-type mice. Our results provide a rationale for early and localized suppression of cilia in affected tissues after injury as a therapeutic strategy against either genetic or acquired HO.
Keyphrases
- wild type
- mesenchymal stem cells
- binding protein
- induced apoptosis
- endothelial cells
- genome wide
- bone regeneration
- cell cycle arrest
- copy number
- gene expression
- pi k akt
- stem cells
- transcription factor
- cell death
- oxidative stress
- type diabetes
- pluripotent stem cells
- cancer therapy
- adipose tissue
- metabolic syndrome
- insulin resistance
- endoplasmic reticulum stress
- soft tissue
- transforming growth factor
- density functional theory
- bone mineral density