The ring vaccination trial design for the estimation of vaccine efficacy and effectiveness during infectious disease outbreaks.
Natalie E DeanIra M LonginiPublished in: Clinical trials (London, England) (2022)
The ring vaccination trial is a recently developed approach for evaluating the efficacy and effectiveness of vaccines, modeled after the surveillance and containment strategy of ring vaccination. Contacts and contacts of contacts of a newly identified disease case form a ring, and these rings are randomized as part of a cluster-randomized trial or with individual randomization within rings. Key advantages of the design include its flexibility to follow the epidemic as it progresses and the targeting of high-risk participants to increase power. We describe the application of the design to estimate the efficacy and effectiveness of an Ebola vaccine during the 2014-2016 West African Ebola epidemic. The design has several notable statistical features. Because vaccination occurs around the time of exposure, the design is particularly sensitive to the choice of per protocol analysis period. If incidence wanes before the per protocol analysis period begins (due to a slow-acting vaccine or a fast-moving pathogen), power can be substantially reduced. Mathematical modeling is valuable for exploring the suitability of the approach in different disease settings. Another statistical feature is zero inflation, which can occur if the chain of transmission does not take off within a ring. In the application to Ebola, the majority of rings had zero subsequent cases. The ring vaccination trial can be extended in several ways, including the definition of rings (e.g. contact-based, spatial, and occupational). The design will be valuable in settings where the spatio-temporal spread of the pathogen is highly focused and unpredictable.