Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors.
Liduo RongWei ZhaoYu FanZixuan ZhouMeixiao ZhanXu HeWeizhong YuanChunhua QianPublished in: ACS applied materials & interfaces (2022)
Nowadays, with the rapid development of artificial intelligence, conductive hydrogel-based sensors play an increasingly vital role in health monitoring and temperature sensing. However, the perfect integration of the environmental stability and applied performance of the hydrogel has always been a challenging and significant problem. Herein, we report an environmentally tolerant, stretchable, adhesive, self-healing conductive gel through multiple dynamic interactions in the water/glycerol/ionic liquids medium, which can be used as a high-performance strain and temperature sensor. The random copolymer poly(acrylic acid- co -acetoacetoxyethyl methacrylate) interacts with the branched poly(ethylene imine) (PEI) and Zr 4+ ions via the dynamic covalent enamine bonds, coordinations, and electrostatic interactions to improve stretchable (1300%), compressible, fatigue-resistant (1000 cycles at 50% strain), and self-healing performance (95%, 24 h). The combination of water/glycerol/ionic liquids imparts the resulting gel with excellent electrical conductivity, anti-drying, and anti-freezing performance. By means of the above excellent performance, the gel could be used as the flexible strain or pressure sensor with high sensitivity and stability for the detection of the movement, expression, handwriting, pronouncing, and electrocardiogram (ECG) signals in various models. Meanwhile, the resulting gel can be assembled as the temperature sensor to trace the change of temperature accurately and steadily, which has a wide operating window (0 to 100 °C), an ultralow detection limit (0.2 °C), and high sensitivity (2.1% °C -1 ). It is believed that the strategy for the multifunction and high-performance gel will blaze a new trail for the smart device in health management, temperature detection, and information transmission under various environmental conditions.
Keyphrases
- ionic liquid
- artificial intelligence
- hyaluronic acid
- wound healing
- loop mediated isothermal amplification
- public health
- healthcare
- room temperature
- machine learning
- human health
- drug delivery
- health information
- poor prognosis
- risk assessment
- label free
- low cost
- computed tomography
- blood pressure
- long non coding rna
- pet ct
- quantum dots
- social media