Login / Signup

Coupled Local-Mode Approach for the Calculation of Vibrational Spectra: Application to Protonated Water Clusters.

Matthew D HansonJanel A ReadnourAli A HassanaliSteven A Corcelli
Published in: The journal of physical chemistry letters (2021)
Spectroscopic studies of protonated water clusters (PWCs) have yielded enormous insights into the fundamental nature of the hydrated proton. Here, we introduce a new coupled local-mode (CLM) approach to calculate PWC OH stretch vibrational spectra. The CLM method combines a sampling of representative configurations from density functional theory (DFT)-based ab initio molecular dynamics (AIMD) simulations with DFT calculations of local-mode vibrational frequencies and couplings. Calculations of inhomogeneous OH stretch vibrational spectra for H+(H2O)4 and H+(H2O)21 agree well with experiment and higher-level calculations, and decompositions of the calculated spectra in terms of the coupled modes aids in the interpretation of the spectra. This observation is consistent with the idea that capturing anharmonicity and coupling is as important to accuracy as the underlying level of electronic structure theory. The CLM calculations can easily discern the configuration that dominates the experimental measurement for H+(H2O)5, which can adopt several low-energy conformations.
Keyphrases
  • density functional theory
  • molecular dynamics
  • cross sectional