Login / Signup

Differences in memory for what, where, and when components of recently formed episodes.

John J SakonRoozbeh Kiani
Published in: Journal of neurophysiology (2022)
An integral feature of human memory is the ability to recall past events. What distinguishes such episodic memory from semantic or associative memory is the joint encoding and retrieval of "what," "where," and "when" (WWW) for such events. Surprisingly, little work has addressed whether all three components of WWW are retrieved with equal fidelity when remembering episodes. To study this question, we created a novel task where human participants identified matched or mismatched still images sampled from recently viewed synthetic movies. The mismatch images only probe one of the three WWW components at a time, allowing us to separately test accuracies for each component of the episodes. Crucially, each WWW component in the movies is easily distinguishable in isolation, thereby making any differences in accuracy between components due to how they are joined in memory. We find that memory for "when" has the lowest accuracy, with it being the component most influenced by primacy and recency. Furthermore, the memory of "when" is most susceptible to interference due to changes in task load. These findings suggest that episodes are not stored and retrieved as a coherent whole but instead their components are either stored or retrieved differentially as part of an active reconstruction process. NEW & NOTEWORTHY When we store and subsequently retrieve episodes, does the brain encode them holistically or in separate parts that are later reconstructed? Using a task where participants study abstract episodes and on any given trial are probed on the what, where, and when components, we find mnemonic differences between them. Accuracy for "when" memory is the lowest, as it is most influenced by primacy, recency, and interference, suggesting that episodes are not treated holistically by the brain.
Keyphrases
  • pluripotent stem cells
  • working memory
  • deep learning
  • clinical trial
  • endothelial cells
  • resting state
  • functional connectivity
  • brain injury
  • subarachnoid hemorrhage
  • newly diagnosed
  • phase ii