Neural cell adhesion molecule is required for ventricular conduction system development.
Camila DelgadoLei BuJie ZhangFang-Yu LiuJoseph SallFeng-Xia LiangAndrew J FurleyGlenn I FishmanPublished in: Development (Cambridge, England) (2021)
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.
Keyphrases
- cell adhesion
- left ventricular
- gene expression
- heart failure
- catheter ablation
- induced apoptosis
- poor prognosis
- preterm infants
- dna methylation
- transcription factor
- high fat diet induced
- type diabetes
- atrial fibrillation
- minimally invasive
- binding protein
- cell proliferation
- metabolic syndrome
- single cell
- insulin resistance
- endoplasmic reticulum stress
- big data
- skeletal muscle
- heat shock protein
- data analysis
- flow cytometry