Login / Signup

Alginate-Based Carriers Loaded with Mulberry ( Morus alba L.) Leaf Extract: A Promising Strategy for Prolonging 1-Deoxynojirimicyn (DNJ) Systemic Activity for the Nutraceutical Management of Hyperglycemic Conditions.

Lucia MarchettiEleonora TruzziMaria Cecilia RossiStefania BenvenutiSilvia CappellozzaAlessio SavianeLuca BogatajCristina SiligardiDavide Bertelli
Published in: Molecules (Basel, Switzerland) (2024)
The iminosugar 1-deoxynojirimicyn (DNJ) contained in mulberry leaves has displayed systemic beneficial effects against disorders of carbohydrate metabolism. Nevertheless, its effect is impaired by the short half-life. Alginate-based carriers were developed to encapsulate a DNJ-rich mulberry extract: Ca-alginate beads, obtained by external gelation, and spray-dried alginate microparticles (SDMs). Mean size and distribution, morphology, drug loading, encapsulation efficiency, experimental yield, and release characteristics were determined for the two formulations. Ca-alginate beads and SDMs exhibited an encapsulation efficiency of about 54% and 98%, respectively, and a DNJ loading in the range of 0.43-0.63 μg/mg. The in vitro release study demonstrated the carriers' capability in controlling the DNJ release in acid and basic conditions (<50% in 5 h), due to electrostatic interactions, which were demonstrated by 1H-NMR relaxometry studies. Thus, alginate-based particles proved to be promising strategies for producing food supplements containing mulberry leaf extracts for the management of hyperglycemic state.
Keyphrases
  • wound healing
  • tissue engineering
  • magnetic resonance
  • oxidative stress
  • drug delivery
  • emergency department
  • high resolution
  • risk assessment
  • molecular dynamics simulations
  • human health
  • anti inflammatory