CsPbBr 3 and CsPbBr 3 /SiO 2 Nanocrystals as a Fluorescence Sensing Platform for High-Throughput Identification of Multiple Thiophene Sulfides.
Xiaowei FengXinyu ZhangJuan HuangRufen WuYumin LengZhengbo ChenPublished in: Analytical chemistry (2022)
Air pollution is a serious problem. Refractory thiophene sulfides, which cause air pollution, bring great challenges to their rapid and accurate identification. In this work, we propose a fluorescent sensor array based on two perovskite nanocrystals (CsPbBr 3 NCs and CsPbBr 3 /SiO 2 NCs) to distinguish different thiophene sulfides. The hydrogen bonding force between the thiophenics of thiophene sulfides and the amino groups of the perovskite NCs results in the weakening of the fluorescence signals of the perovskite NCs. The diverse interactions between thiophene sulfides and two perovskite NCs provide rich information, which can be obtained on the sensor array and identified by linear discriminant analysis. Five thiophene sulfides (i.e., benzothiophene, dibenzothiophene, 2-methylbenzothiophene, 3-methylthiophene, and thiophene) were discriminated by the sensor array at concentrations of 10-50 ppm. The effectiveness of the sensor array was further verified in the discrimination of blinded samples, in which all 10 samples were correctly identified. In addition, it is gratifying that even binary mixtures of thiophene sulfides could be distinguished by the proposed sensor array.