PEITC promotes neurite growth in primary sensory neurons via the miR-17-5p/STAT3/GAP-43 axis.
Zhijie WangWenqi YuanBo LiXueming ChenYanjun ZhangChuanjie ChenMei YuYucai XiuWenhua LiJiangang CaoXin WangWen TaoXiaoling GuoShi-Qing FengTianyi WangPublished in: Journal of drug targeting (2018)
The present study explored a key miRNA that plays a vital role in sciatic nerve conditioning injury promoting repair of injured dorsal column, and validated its function. Microarray analysis revealed miR-17-5p expression decreased sharply at 3, 7 and 14 days in the sciatic nerve conditioning injury group compared with the simple dorsal column lesion group. After miR-17-5p inhibition in DRG neurons, GAP-43 expression was upregulated and neurite growth was increased. STAT3 together with p-STAT3 showed opposite trends with miR-17-5p. MiR-17-5p inhibition extended neurite and upregulated STAT3, p-STAT3 and GAP-43. To further determine a substitution therapy for sciatic nerve conditioning injury, beta-phenethyl isothiocyanate (PEITC), which downregulates miR-17-5p, was assessed. The results showed that treatment with 10 µM PEITC resulted in longest neurite length. Further experiments demonstrated PEITC induced neurite growth by inhibiting miR-17-5p and further upregulating STAT3, p-STAT3 and GAP-43. The somatosensory evoked potential test confirmed similar treatment effects for PEITC, Ad-miRNA-17-5p inhibitor, and sciatic nerve conditioning injury on the dorsal column lesion. In conclusion, the miR-17-5p/STAT3/GAP-43 axis is an indispensable component of sciatic nerve conditioning injury promoting repair of injured dorsal column. PEITC could promote repair of injured dorsal column via the miR-17-5p/STAT3/GAP-43 axis, and could mimic the treatment effect of sciatic nerve conditioning injury.