The underlying mechanisms of metastasis and recurrence of liver cancer remain largely unknown. Here, we found that Brother of the Regulator of Imprinted Sites (BORIS) variant SF2(C2/A4) was highly expressed in high metastatic potential hepatocellular carcinoma (HCC) cells and clinical tumor samples, related to the formation of satellite nodules. Its over expression promoted self-renewal, the expression of tumor stem cell markers, chemoresistance, wound healing rate, invasion and metastasis of HepG2 and Hep3B cells; reinforced epithelial-mesenchymal transition (EMT), decreased the expression of E-cadherin and increased N-cadherin and Vimentin. Subcellular localization experiment showed that BORIS SF2(C2/A4) was localized in nucleus and cytoplasm. Further double luciferase reporter gene experiment confirmed that it bound to TWIST1 gene promoter and significantly increased latter expression. BORIS SF2(C2/A4) knock down induced apoptosis of HCCLM3 and PLC/PRF/5 cells, and increased the protein content of cleaved caspase 3. Additionally, BORIS SF2(C2/A4) over expression increased the expression of fibroblast growth factor 2 (FGF2) in HepG2 and Hep3B cells. FGF2 expressed higher in HCC tumor tissues than in paired peri-tumor tissues, and its expression was positively correlated with BORIS SF2(C2/A4). Interestingly, high expression of FGF2 is also associated with the formation of satellite nodules. Moreover, using the medium from BORIS SF2(C2/A4) overexpressed cell lines to coculture hepatic stellate cell (HSCs) line LX-2, the latter could be activated and increased the expression of CD90 and PIGF, which is consistent with the effect of adding bFGF alone. These results indicate that BORIS SF2(C2/A4) plays a role in deterioration of liver cancer by regulating TWIST1 to induce EMT, and by FGF2 to activate HSCs.
Keyphrases
- poor prognosis
- induced apoptosis
- epithelial mesenchymal transition
- stem cells
- binding protein
- signaling pathway
- endoplasmic reticulum stress
- long non coding rna
- gene expression
- small cell lung cancer
- oxidative stress
- dna methylation
- wound healing
- copy number
- cell proliferation
- cell migration
- protein protein
- genome wide identification
- drug induced