Mutations in TGDS associated with additional malformations of the middle fingers and halluces: Atypical Catel-Manzke syndrome in a fetus.
Katharina SchonerRainer BaldDenise HornHelga RehderUwe KornakNadja EhmkePublished in: American journal of medical genetics. Part A (2017)
Pierre-Robin sequence, radial deviation, and ulnar clinodactyly of the index fingers due to an additional phalangeal bone, as well as heart defects are the key features of Catel-Manzke syndrome. Although mutations in TGDS were identified as the cause of this disorder, the pathogenetic mechanism remains unknown. Here, we report on a fetus with severe heart defect, nuchal edema, talipes, Pierre-Robin sequence, and bilateral deviation and clinodactyly of the index and middle fingers. Pregnancy was terminated at the 22nd week of gestation. Postmortem radiographs showed hypoplasia and V-shaped displacement of the second and third proximal phalanges of both hands as well as hypoplasia of the first metatarsals and the phalangeal bones of the halluces. The suggested diagnosis Catel-Manzke syndrome was confirmed by the detection of two compound heterozygous mutations in TGDS: The known variant c.298G>T; p.(Ala100Ser) and the so far undescribed variant c.895G>A; p.(Asp299Asn), located in the predicted substrate binding site of TGDS. This is the first report on the association of mutations in TGDS with additional anomalies of the middle fingers and halluces. We provide a detailed phenotypic characterization of the only fetus with molecularly confirmed Catel-Manzke syndrome, which is relevant for prenatal diagnosis. Our findings widen the phenotype spectrum caused by TGDS mutations and underline the phenotypic overlap with Temtamy preaxial brachydactyly syndrome. This improves our understanding of the prenatal development and the pathogenetic mechanism of Catel-Manzke syndrome.