Zinc Deficiency Induces Oxidative Damage and Causes Spleen Fibrosis.
Qirui ZhangHong-Xin ZhangYu ChenYing WangMei YangMeng-Yao GuoPublished in: Biological trace element research (2019)
Zinc (Zn) is an essential trace element for animals. Zn controls the action of more than 300 enzymes and plays an important role in the regulation of gene expression. Evidence has shown that Zn has an antioxidant function, and oxidative damage can occur with Zn deficiency. To assess the effect of Zn deficiency-induced spleen fibrosis, Zn-deficient mice, normal mice, and high-Zn mice were generated and assessed. The Zn content of the spleen in each group was determined, and histopathological examination of the spleens of each group was performed. In the film, we found that the spleens of the Zn-deficient group had high levels of proteinaceous material exudation, interstitial broadening, and lymphocyte reduction, with increased collagen, α-SMA expression, antioxidants, and oxygen free radicals. Zn deficiency inhibited the expression of antioxidants in mice, and the activity of oxygen free radicals in Zn-deficient mice was increased. The detection of α-SMA, collagen 1, and TGF-β by fluorescence quantitative PCR revealed that the expression index increased in Zn-deficient mice. In addition, to verify the effect of Zn deficiency on the extracellular matrix (ECM) regulatory system, MMPs were determined by real-time PCR, and the expression in the Zn deficiency group was lower than that in the normal group and high-Zn group. The MMP-2 and MMP-13 analyses showed that the expression of the high-Zn group was significantly higher than that of the normal group, indicating that Zn plays an important role in its expression. The above experimental analysis showed that Zn deficiency induces oxygen free radical damage, which further leads to spleen fibrosis.
Keyphrases