Application of Genetic Algorithm and U-Net in Brain Tumor Segmentation and Classification: A Deep Learning Approach.
Muhammad ArifAnupama JimsAjesh FOana GemanMaria-Daniela CraciunFlorin LeuciucPublished in: Computational intelligence and neuroscience (2022)
The development of unusual cells in the cerebrum causes brain cancer. It is classified primarily into two classes: a noncarcinogenic (benign) type of growth and cancerous (malignant) growth. Early detection of this disease is a quintessential task for all medical practice professionals. For traditional approaches of tumor detections, certain limitations exist. They include less effectiveness, inability to detect due to low-quality processing of images, less dataset for training and testing, less predictive nature to models, and skipping of quintessential stages. All these lead to inaccurate results of tumor detections. To overcome this issue, this paper brings an effective deep learning technique for brain tumor detection with the following stages: (a) data collection from REMBRANDT dataset containing multisequence MRI of 130 patients; (b) preprocessing using conversion to greyscale, skull stripping, and histogram equalization; (c) segmentation uses genetic algorithm; (d) feature extraction using discrete wavelet transform (DWT); (e) particle swarm optimization technique for feature selection; (f) classification using U-Net. Experiment evaluation states that the proposed model (GA-UNET) outperforms (accuracy: 0.97, sensitivity: 0.98, specificity: 0.98) compared to other advanced models.
Keyphrases
- deep learning
- convolutional neural network
- artificial intelligence
- machine learning
- end stage renal disease
- healthcare
- ejection fraction
- randomized controlled trial
- newly diagnosed
- induced apoptosis
- genome wide
- contrast enhanced
- chronic kidney disease
- big data
- primary care
- systematic review
- pet ct
- papillary thyroid
- cell cycle arrest
- prognostic factors
- electronic health record
- copy number
- quality improvement
- oxidative stress
- dna methylation
- virtual reality
- brain injury
- pi k akt
- quantum dots