A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre- and Post-Menopausal Women.
Blessed ZiyambeAbid YahyaTawanda MushiriMuhammad Usman TariqQaisar AbbasMuhammad BabarMubarak AlbathanMuhammad AsimAyyaz HussainSohail JabbarPublished in: Diagnostics (Basel, Switzerland) (2023)
Ovarian cancer ranks as the fifth leading cause of cancer-related mortality in women. Late-stage diagnosis (stages III and IV) is a major challenge due to the often vague and inconsistent initial symptoms. Current diagnostic methods, such as biomarkers, biopsy, and imaging tests, face limitations, including subjectivity, inter-observer variability, and extended testing times. This study proposes a novel convolutional neural network (CNN) algorithm for predicting and diagnosing ovarian cancer, addressing these limitations. In this paper, CNN was trained on a histopathological image dataset, divided into training and validation subsets and augmented before training. The model achieved a remarkable accuracy of 94%, with 95.12% of cancerous cases correctly identified and 93.02% of healthy cells accurately classified. The significance of this study lies in overcoming the challenges associated with the human expert examination, such as higher misclassification rates, inter-observer variability, and extended analysis times. This study presents a more accurate, efficient, and reliable approach to predicting and diagnosing ovarian cancer. Future research should explore recent advances in this field to enhance the effectiveness of the proposed method further.