ICOS deficiency hampers the homeostasis, development and function of NK cells.
María Montes-CasadoGloria OjedaLaura Aragoneses-FenollDaniel LópezBelén de AndrésMaría Luisa GasparUmberto DianzaniJosé M RojoPilar PortolésPublished in: PloS one (2019)
Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation.
Keyphrases
- nk cells
- immune response
- dendritic cells
- bone marrow
- induced apoptosis
- cell proliferation
- end stage renal disease
- emergency department
- chronic kidney disease
- metabolic syndrome
- type diabetes
- physical activity
- adipose tissue
- stem cells
- high fat diet induced
- regulatory t cells
- poor prognosis
- single cell
- cell cycle arrest
- cell death