Login / Signup

Investigation of Monosodium Glutamate Alternatives for Content of Umami Substances and Their Enhancement Effects in Chicken Soup Compared to Monosodium Glutamate.

Shangci WangBrandon D TonnisMing Li WangShaokang ZhangKoushik Adhikari
Published in: Journal of food science (2019)
This research aimed to compare the effects of monosodium glutamate (MSG) and its alternatives on sensory characteristics of chicken soup. High-performance liquid chromatography analysis was carried out to quantify umami substances in potential MSG alternatives. Two mushroom extracts (CE and MC), one tomato extract (TC), and one yeast extract (YE) powders were selected due to their high equivalent umami concentration (EUC). These extracts together with MSG were then applied individually at four different levels (CE, MC, TC, MSG: 0.05%, 0.1%, 0.2%, 0.4%; YE: 0.0125%, 0.025%, 0.05%, 0.1%) in chicken soup in order to compare their impact on major sensory attributes using the degree of difference from control (DODC) test. Our results showed that all four extracts at all the usage levels exhibited an enhancement effect on the overall flavor, meaty flavor, saltiness, and umami taste. The extent of enhancement depended on the type of the alternative and its usage level. Higher levels of MSG alternatives (except YE) suppressed the chicken flavor. YE had similar enhancement effects as MSG on umami and salty tastes already at lower usage levels. At the lowest concentration, TC showed a stronger enhancement effect than MSG, but its effect on most attributes decreased as the usage dose increased. Compared to CE, the other mushroom extract MC resembled MSG at most levels. Overall, the closest synergistic effect in chicken soup was noted with 0.1% MSG, 0.1% MC, and 0.025% YE. PRACTICAL APPLICATION: This study compared the enhancement effects of MSG and selected alternatives in chicken soup. Results will help food manufacturers who would like to replace MSG with natural umami substances in soup products to enhance flavor and reduce sodium chloride.
Keyphrases
  • high performance liquid chromatography
  • oxidative stress
  • mass spectrometry
  • drinking water
  • risk assessment
  • anti inflammatory
  • climate change
  • simultaneous determination
  • tandem mass spectrometry
  • ms ms
  • data analysis