Login / Signup

A new immune checkpoint-associated nine-gene signature for prognostic prediction of glioblastoma.

Xiao JinXiang Zhao
Published in: Medicine (2023)
Glioblastoma (GBM) is a highly malignant neurological tumor that has a poor prognosis. While pyroptosis affects cancer cell proliferation, invasion and migration, function of pyroptosis-related genes (PRGs) in GBM as well as the prognostic significance of PRGs remain obscure. By analyzing the mechanisms involved in the association between pyroptosis and GBM, our study hopes to provide new insights into the treatment of GBM. Here, 32 out of 52 PRGs were identified as the differentially expressed genes between GBM tumor versus normal tissues. And all GBM cases were assigned to 2 groups according to the expression of the differentially expressed genes using comprehensive bioinformatics analysis. The least absolute shrinkage and selection operator analysis led to the construction of a 9-gene signature, and the cancer genome atlas cohort of GBM patients were categorized into high risk and low risk subgroups. A significant increase in the survival possibility was found in low risk patients in comparison with the high risk ones. Consistently, low risk patients of a gene expression omnibus cohort displayed a markedly longer overall survival than the high risk counterparts. The risk score calculated using the gene signature was found to be an independent predictor of survival of GBM cases. Besides, we observed significant differences in the expression levels of immune checkpoints between the high risk versus low risk GBM cases, providing instructive suggestions for immunotherapy of GBM. Overall, the present study developed a new multigene signature for prognostic prediction of GBM.
Keyphrases