Login / Signup

pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer.

Feng FanLijun JinLihua Yang
Published in: ACS applied materials & interfaces (2021)
Pancreatic tumor is extremely lethal because its cancerous structures are sheltered by dense stromal barriers that hinder the infiltration of therapeutics. To facilitate the infiltration of therapeutics through the stromal barrier, remodeling the stroma with an adjuvant prior to or together with gemcitabine-the current chemotherapeutic standard for pancreatic cancer-is a widely studied strategy; nevertheless, the intrinsic nonuniformity in distribution (spatial and/or temporal) of the adjuvant and gemcitabine has raised the increased risk of tumor metastasis as a major concern. In this work, we propose long-circulating, pH-sensitive nanoparticles composed solely of cellular membrane-disruptive molecules as a new approach for treating pancreatic cancer. Using a micelle of a polymeric mimetic of host defense peptides as the model for such nanoparticles, we showed that this nanoparticle exhibited acid-activated cytotoxicity indiscriminately to both cancerous and fibroblast cells, and the underlying activity mode was acid-activatable disruption of cellular membrane integrity. As a result, our acid-activatable nanoparticle effectively permeabilized the stromal barrier and eradicated the otherwise sheltered pancreatic cancer cells, as demonstrated with a three-dimensional spheroid in which a shell of fibroblast NIH-3T3 cells was cultured over a core of pancreatic BxPC-3 cells. When administered intravenously into mouse models bearing xenograft pancreatic BxPC-3 tumors, our acid-activatable nanoparticle efficiently inhibited tumor growth without causing noticeable off-target adverse effects or promoting tumor metastasis. Notably, this nanoparticle permeabilized the otherwise dense pancreatic tumor tissue while significantly suppressing the expression of extracellular matrix components and activated cancer-associated fibroblasts. Although the feasibility of our approach was demonstrated with a micelle of a polymeric molecule, we trust that future research efforts in this pathway may eventually offer translational formulations for improving the therapeutic efficacy of pancreatic cancer.
Keyphrases