Login / Signup

Coking-Produced Aromatic Compounds in Urine of Exposed and Nonexposed Populations: Exposure Levels, Source Identification, and Model-Based Health Implications.

Hailing LiChunyang YaoChang HeHang YuCongcong YueShu ZhangGuiying LiShengtao MaXin ZhangZhi-Guo CaoTaicheng An
Published in: Environmental science & technology (2023)
Coking contamination in China is complex and poses potential health risks to humans. In this study, we collected urine samples from coking plant workers, nearby residents, and control individuals to analyze 25 coking-produced aromatic compounds (ACs), including metabolites of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, chlorophenols, and nitrophenols. The median concentration of total ACs in urine of workers was 102 μg·g -1 creatinine, significantly higher than that in the other two groups. Hydroxy-PAHs and hydroxy hetero-PAHs were the dominant ACs. Workers directly exposed from coking industrial processes, i.e., coking, coal preparation, and chemical production processes, showed higher concentrations of hydroxy-PAHs and hydroxy hetero-PAHs (excluding 5-hydroxyisoquinoline), while those from indirect exposure workshops had higher levels of other ACs, indicating different sources in the coking plant. The AC mixture in workers demonstrated positive effects on DNA damage and lipid peroxidation with 5-hydroxyisoquinoline and 3-hydroxycarbazole playing a significant role using a quantile g-computation model. Monte Carlo simulation revealed that coking contamination elevated the carcinogenic risk for exposed workers by 5-fold compared to controls with pyrene, pentachlorophenol, and carbazole contributing the most, and workers from coking process are at the highest risk. This study enhances understanding of coking-produced AC levels and provides valuable insights into coking contamination control.
Keyphrases