CENPF as an independent prognostic and metastasis biomarker corresponding to CD4+ memory T cells in cutaneous melanoma.
Mengzhi LiJingling ZhaoRonghua YangRuizhao CaiXusheng LiuJulin XieBin ShuShaohai QiPublished in: Cancer science (2022)
Owing to recent advances in immunotherapies, the overall survival of patients with skin cutaneous melanoma (SKCM) has increased; however, the 5-year survival rate of metastatic patients remains poor. Skin cutaneous melanoma-upregulated genes were screened via analysis of differentially expressed genes (GSE3189 and GSE46517), and metastasis-related oncogenes were identified via weighted gene coexpression network analysis of the GSE46517 dataset. As confirmed by the Tumor Immune Estimation Resource, we found highly expressed centromere protein F (CENPF) in SKCM and its metastases. Immunostaining of human melanoma tissues demonstrated high CENPF expression. According to the Kaplan-Meier survival curve log-rank test, receiver-operating characteristic curve, and univariate and multivariate analyses, the Cancer Genome Atlas (TCGA) database suggested CENPF be a typical independent predictor of SKCM. The CIBERSORT algorithm classified the types of the immune cells from GSE46517 and showed higher proportion of CD4+ memory-activated T cells in metastatic melanoma. Single-sample gene set enrichment analysis of TCGA data confirmed the correlation between CENPF and activated CD4+ T cells. Centromere protein F was positively correlated with tumor mutational burden and CD4+ memory T cell markers (interleukin [IL]-23A, CD28, and CD62L), negatively associated with memory T cell maintenance factors (IL-7 and IL-15) by correlation analysis. Moreover, immunofluorescence showed high coexpression of CENPF and IL23A, CD4 in melanoma. Upregulated CENPF might lead to premature depletion of CD4+ memory T cells and immunosuppression. Nomogram indicated CENPF clinical predictive value for 1-, 3-, 5-, and 7-year melanoma overall survival. Therefore, CENPF plays a vital role in the progression and metastasis of melanoma and can be an effective therapeutic target.
Keyphrases
- working memory
- genome wide
- skin cancer
- nk cells
- gene expression
- end stage renal disease
- small cell lung cancer
- endothelial cells
- chronic kidney disease
- poor prognosis
- magnetic resonance imaging
- genome wide identification
- soft tissue
- computed tomography
- deep learning
- emergency department
- peritoneal dialysis
- network analysis
- binding protein
- amino acid
- dna methylation
- artificial intelligence
- adverse drug