Login / Signup

Expansion of omega-3 polyunsaturated fatty acid metabolism of the oleaginous diatom Fistulifera solaris by genetic engineering.

Noraiza SuhaimiRyota KumakuboTomoko YoshinoYoshiaki MaedaSatoshi MurataTsuyoshi Tanaka
Published in: Journal of bioscience and bioengineering (2024)
Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.
Keyphrases
  • fatty acid
  • genome wide
  • endothelial cells
  • dna methylation